
Communication of Prozessen Cooperation of Processes

10th Slide Set
Operating Systems

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences
(1971–2014: Fachhochschule Frankfurt am Main)
Faculty of Computer Science and Engineering

christianbaun@fb2.fra-uas.de

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 1/62

Communication of Prozessen Cooperation of Processes

Learning Objectives of this Slide Set

At the end of this slide set You know/understand. . .
different options to implement communication between processes:

Shared memory
Message queues
Pipes
Sockets

different options to implement cooperation between processes
how critical sections can be protected via semaphores
the difference between semaphore and mutex

Exercise sheet 10 repeats the contents of this slide set which are relevant for these learning
objectives
Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 2/62

Communication of Prozessen Cooperation of Processes

Shared Memory

Inter-process communication via a shared memory is also called
memory-based communication
Shared memory segments are memory areas, which can be accessed
by multiple processes

These memory areas are located in the address space of multiple
processes

The processes need to coordinate the accesses themselves and to ensure
that their memory accesses are mutually exclusive

A receiver process, cannot read data from the shared memory, before the
sender process has finished its current write operation
If access operations are not coordinated carefully
=⇒ inconsistencies occur

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 3/62

Communication of Prozessen Cooperation of Processes

Shared Memory in Linux/UNIX

Linux/UNIX operating systems contain a shared memory table, which
contains information about the existing shared memory segments

This information includes: Start address in memory, size, owner
(username and group) and privileges

A shared memory
segment is always
addressed via its
index number in the
shared memory table

Advantage:
A shared memory segment which is not attached to a process, is not
erased by the operating system automatically

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 4/62

Communication of Prozessen Cooperation of Processes

Working with Shared Memory

Linux/UNIX operating systems provide 4 system calls for working with shared memory

shmget(): Create shared memory segments
shmat(): Attach shared memory segments to processes
shmdt(): Detach shared memory segments from processes
shmctl(): Request status information (e.g. privileges) about shared memory segments, modify and erase shared memory
segments

A well explained example about workng with shared memory provides. . .
http://openbook.rheinwerk-verlag.de/unix_guru/node393.html

ipcs

The command ipcs provides information of existing shared memory segments

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 5/62

http://openbook.rheinwerk-verlag.de/unix_guru/node393.html

Communication of Prozessen Cooperation of Processes

Create a Shared Memory Segment (in C)
1 # include <sys/ipc.h>
2 # include <sys/shm.h>
3 # include <stdio .h>
4 # define MAXMEMSIZE 20
5
6 int main(int argc , char ** argv) {
7 int shared_memory_id = 12345;
8 int returncode_shmget ;
9

10 // Create shared memory segment or access an existing one
11 // IPC_CREAT = create a shared memory segment , if it does not still exist
12 // 0600 = Access privileges for the new message queue
13 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
14
15 if (returncode_shmget < 0) {
16 printf (" Unable to create the shared memory segment .\n");
17 perror (" shmget ");
18 } else {
19 printf ("The shared memory segment has been created .\n");
20 }
21 }

$ ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0 x00003039 56393780 bnc 600 20 0

$ printf "%d\n" 0 x00003039 # Convert from hexadecimal to decimal
12345

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 6/62

Communication of Prozessen Cooperation of Processes

Attach a Shared Memory Segment (in C)
1 # include <sys/ types .h>
2 # include <sys/ipc.h>
3 # include <sys/shm.h>
4 # include <stdio .h>
5 # define MAXMEMSIZE 20
6
7 int main(int argc , char ** argv) {
8 int shared_memory_id = 12345;
9 int returncode_shmget ;

10 char * sharedmempointer ;
11
12 // Create shared memory segment or access an existing one
13 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
14 ...
15
16 // Attach shared memory segment
17 sharedmempointer = shmat (returncode_shmget , 0, 0);
18 if (sharedmempointer ==(char *) -1) {
19 printf (" Unable to attach the shared memory segment .\n");
20 perror (" shmat ");
21 } else {
22 printf ("The shared memory segment has been attached %p\n", sharedmempointer);
23 }
24 }
25 }

$ ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0 x00003039 56393780 bnc 600 20 1

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 7/62

Communication of Prozessen Cooperation of Processes

Detach a Shared Memory Segment (in C)
1 # include <sys/ types .h>
2 # include <sys/ipc.h>
3 # include <sys/shm.h>
4 # include <stdio .h>
5 # define MAXMEMSIZE 20
6
7 int main(int argc , char ** argv) {
8 int shared_memory_id = 12345;
9 int returncode_shmget ;

10 int returncode_shmdt ;
11 char * sharedmempointer ;
12
13 // Create shared memory segment or access an existing one
14 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
15 ...
16
17 // Attach the shared memory segment
18 sharedmempointer = shmat (returncode_shmget , 0, 0);
19 ...
20
21 // Detach the shared memory segment
22 returncode_shmdt = shmdt (sharedmempointer);
23 if (returncode_shmdt < 0) {
24 printf (" Unable to detach the shared memory segment .\n");
25 perror (" shmdt ");
26 } else {
27 printf ("The shared memory segment has been detached .\n");
28 }
29 }
30 }

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 8/62

Communication of Prozessen Cooperation of Processes

Write into a Shared Mem. Segment and read from it (in C)
1 # include <sys/ types .h>
2 # include <sys/ipc.h>
3 # include <sys/shm.h>
4 # include <stdio .h>
5 # define MAXMEMSIZE 20
6
7 int main(int argc , char ** argv) {
8 int shared_memory_id = 12345;
9 int returncode_shmget , returncode_shmdt , returncode_sprintf ;

10 char * sharedmempointer ;
11
12 // Create shared memory segment or access an existing one
13 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
14 ...
15 // Attach shared memory segment
16 sharedmempointer = shmat (returncode_shmget , 0, 0);
17 ...
18
19 // Write a string into the shared memory segment
20 returncode_sprintf = sprintf (sharedmempointer , " Hallo Welt.");
21 if (returncode_sprintf < 0) {
22 printf ("The write operation did fail .\n");
23 } else {
24 printf ("%i chareacters written into the segment .\n", returncode_sprintf);
25 }
26
27 // Read the string from the shared memory segment
28 if (printf ("%s\n", sharedmempointer) < 0) {
29 printf ("The read operation did fail .\n");
30 }
31 ...
Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 9/62

Communication of Prozessen Cooperation of Processes

Erase a Shared Memory Segment (in C)

1 # include <sys/ types .h>
2 # include <sys/ipc.h>
3 # include <sys/shm.h>
4 # include <stdio .h>
5 # define MAXMEMSIZE 20
6
7 int main(int argc , char ** argv) {
8 int shared_memory_id = 12345;
9 int returncode_shmget ;

10 int returncode_shmctl ;
11 char * sharedmempointer ;
12
13 // Create shared memory segment or access an existing one
14 returncode_shmget = shmget (shared_memory_id , MAXMEMSIZE , IPC_CREAT | 0600) ;
15 ...
16
17 // Ease shared memory segment
18 returncode_shmctl = shmctl (returncode_shmget , IPC_RMID , 0);
19 if (returncode_shmctl == -1) {
20 printf (" Unable to erase the shared memory segment .\n");
21 perror (" semctl ");
22 } else {
23 printf ("The shared memory segment has been erased .\n");
24 }
25 }
26 }

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 10/62

Communication of Prozessen Cooperation of Processes

Message Queues

Are linked lists with messages
Operate according to the FIFO principle
Processes can store data inside and picked them up from there
Benefit:

Even after the termination of the process, which created the message
queue, is the data inside the message queue available

Linux/UNIX operating systems provide 4 system calls for working with message queues

msgget(): Create message queues
msgsnd(): Send messages into message queues (=⇒ write operation)
msgrcv(): Receive messages from message queues (=⇒ read operation)
msgctl(): Request status information (e.g. privileges) of message queues, modify and erase message queues

ipcs

The command ipcs provides information of existing message queues segments

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 11/62

Communication of Prozessen Cooperation of Processes

Create Message Queues (in C)
1 # include <stdlib .h>
2 # include <sys/ types .h>
3 # include <sys/ipc.h>
4 # include <stdio .h>
5 # include <sys/msg.h>
6
7 int main(int argc , char ** argv) {
8 int returncode_msgget ;
9

10 // Create message queue or access an existing one
11 // IPC_CREAT => create a message queue , if it does not still exist
12 // 0600 = Access privileges for the new message queue
13 returncode_msgget = msgget (12345 , IPC_CREAT | 0600) ;
14 if(returncode_msgget < 0) {
15 printf (" Unable to create the message queue .\n");
16 exit (1);
17 } else {
18 printf ("The message queue 12345 with the ID %i has been created .\n",

returncode_msgget);
19 }
20 }

$ ipcs -q
------ Message Queues --------
key msqid owner perms used - bytes messages
0 x00003039 98304 bnc 600 0 0

$ printf "%d\n" 0 x00003039 # Convert from hexadecimal to decimal
12345

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 12/62

Communication of Prozessen Cooperation of Processes

Store Messages inside Message Queues (in C)
1 # include <stdlib .h>
2 # include <sys/ types .h>
3 # include <sys/ipc.h>
4 # include <stdio .h>
5 # include <sys/msg.h>
6 # include <string .h> // This header file is required for strcpy ()
7
8 struct msgbuf { // Template of a buffer for msgsnd and msgrcv
9 long mtype ; // Message type

10 char mtext [80]; // Send buffer
11 } msg;
12
13 int main(int argc , char ** argv) {
14 int returncode_msgget ;
15
16 // Create message queue or access an existing one
17 returncode_msgget = msgget (12345 , IPC_CREAT | 0600) ;
18 ...
19
20 msg. mtype = 1; // Specifiy the message type festlegen
21 strcpy (msg.mtext , " Testnachricht "); // Write the message into the send buffer
22
23 // Store a message inside the message queue
24 if (msgsnd (returncode_msgget , &msg , strlen (msg. mtext), 0) == -1) {
25 printf (" Unable to store the message into the message queue .\n");
26 exit (1);
27 }
28 }

The message type (a positive integer value) specifies the user
Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 13/62

Communication of Prozessen Cooperation of Processes

Result of storing a Message inside a Message Queue

Before. . .

$ ipcs -q
------ Message Queues --------
key msqid owner perms used - bytes messages
0 x00003039 98304 bnc 600 0 0

Afterwards. . .

$ ipcs -q
------ Message Queues --------
key msqid owner perms used - bytes messages
0 x00003039 98304 bnc 600 80 1

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 14/62

Communication of Prozessen Cooperation of Processes

Pick a Message from a Message Queue (in C)
1 # include <stdlib .h>
2 # include <sys/ types .h>
3 # include <sys/ipc.h>
4 # include <stdio .h>
5 # include <sys/msg.h>
6 # include <string .h> // This header file is required for strcpy ()
7 struct msgbuf { // Template of a buffer for msgsnd and msgrcv
8 long mtype ; // Message type
9 char mtext [80]; // Send buffer

10 } msg;
11
12 int main(int argc , char ** argv) {
13 int returncode_msgget , returncode_msgrcv ;
14 msg receivebuffer ; // Create a receive buffer
15
16 // Create message queue or access an existing one
17 returncode_msgget = msgget (12345 , IPC_CREAT | 0600)
18
19 msg. mtype = 1; // Pick the first message of type 1
20 // MSG_NOERROR => The message will be truncated when it is too long
21 // IPC_NOWAIT => Do not bock the process if no message exists
22 returncode_msgrcv = msgrcv (returncode_msgget , &msg , sizeof (msg. mtext), msg.mtype ,

MSG_NOERROR | IPC_NOWAIT);
23 if (returncode_msgrcv < 0) {
24 printf (" Unable to pick a message from the message queue .\n");
25 perror (" msgrcv ");
26 } else {
27 printf ("This message was picked from the message queue : %s\n", msg. mtext);
28 printf ("The received message is %i characters long .\n", returncode_msgrcv);
29 }
30 }
Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 15/62

Communication of Prozessen Cooperation of Processes

Erase a Message Queue (in C)

1 # include <stdlib .h>
2 # include <sys/ types .h>
3 # include <sys/ipc.h>
4 # include <stdio .h>
5 # include <sys/msg.h>
6
7 int main(int argc , char ** argv) {
8 int returncode_msgget ;
9 int returncode_msgctl ;

10
11 // Create message queue or access an existing one
12 returncode_msgget = msgget (12345 , IPC_CREAT | 0600) ;
13 ...
14
15 // Erase message queue
16 returncode_msgctl = msgctl (returncode_msgget , IPC_RMID , 0);
17 if (returncode_msgctl < 0) {
18 printf (" Unable to erase the message queue with the ID %i.\n", returncode_msgget);
19 perror (" msgctl ");
20 exit (1);
21 } else {
22 printf ("The message queue with the ID %i has been erased .\n", returncode_msgget);
23 }
24
25 exit (0);
26 }

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 16/62

Communication of Prozessen Cooperation of Processes

Pipes (1/4)

A pipe is like a channel or a tube, which allows a buffered unidirectional
flow of data between 2 processes

Can always operate only between 2 processes
Operate according to the FIFO principle
Have limited capacity
Pipe = filled =⇒ the writing process gets blocked
Pipe = empty =⇒ the reading process gets blocked
Are created with system call pipe()

Creates an inode (=⇒ slide set 6) and 2 file descriptors (handles)
Processes carry out read() and write() system calls on the file
descriptors to read data from the pipe and to write data into the pipe

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 17/62

Communication of Prozessen Cooperation of Processes

Pipes (2/4)

When child processes are created with fork(), the child processes also
inherit access to the file descriptors
2 sorts of pipes exist:

Anonymous pipes and named pipes
Anonymous pipes provide process communication only between closely
related processes

Communication only works in one direction (=⇒ unidirectional)
Only processes, which are closely related via fork() can communicate
with each other via anonymous pipes
If the last process, which has access to an anonymous pipe, terminates,
the pipe gets erased by the operating system

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 18/62

Communication of Prozessen Cooperation of Processes

Pipes (3/4)

Processes, which are not closely related with each other, can
communicate via named pipes

These pipes can be accessed by using their names
Any process, which knows the name of a pipe, can use the name to
access the pipe and communicate with other processes

The operating system ensures mutual exclusion
At any time, only a single process can access a pipe

Overview of the pipes in Linux/UNIX: lsof | grep pipe

Pipes in the shell
A pipe forwards the output of a process into the input of another process and it is created in the
shell with the | character. An example is:
cat /path/to/the/file.txt | grep search_pattern

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 19/62

Communication of Prozessen Cooperation of Processes

Programming with Pipes (in C)

Create a pipe:
1 // Create the pipe testpipe
2 if (pipe(testpipe) < 0) {
3 // It the pipe could not be created , the program is terminated
4 printf ("The pipe testpipe could not be created .\n");
5 exit (1);
6 } else {
7 printf ("The pipe testpipe has been created .\n");
8 }

Prepare a pipe for writing (after that the pipe can receive data):
1 close (testpipe [0]); // Block the read channel of the pipe testpipe
2 open(testpipe [1]); // Open the write channel of the pipe testpipe

Prepare a pipe for reading (after that the pipe can be read out):
1 close (testpipe [1]); // Block the write channel of the pipe testpipe
2 open(testpipe [0]); // Open the read channel of the pipe testpipe

Read from a pipe and write into a pipe:
1 read(testpipe [0] , & buffervariable , sizeof (buffervariable));
2 write (testpipe [1] , & buffervariable , sizeof (buffervariable));

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 20/62

Communication of Prozessen Cooperation of Processes

Sockets

Full duplex-ready alternative to pipes and shared memory
Allow interprocess communication in distributed systems

An user process can request a socket from the operating system and
afterwards send and receive data via the socket

The operating system maintains all used sockets and the related
connection information

Ports are used for the communication via sockets
Port numbers are randomly assigned during connection establishment
Port numbers are assigned randomly by the operating system

Exceptions are port numbers of well-known applications, such as HTTP
(80) SMTP (25), Telnet (23), SSH (22), FTP (21),. . .

Sockets can be used in a blocking (synchronous) and non-blocking
(asynchronous) way

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 21/62

Communication of Prozessen Cooperation of Processes

Different Types of Sockets

Connection-less sockets (= datagram sockets)
Use the Transport Layer protocol UDP
Advantage: Better data rate as with TCP

Reason: Lesser overhead for the protocol
Drawback: Segments may arrive in wrong sequence or may get lost

Connection-oriented sockets (= stream sockets)
Use the Transport Layer protocol TCP
Advantage: Better reliability

Segments cannot get lost
Segments always arrive in the correct sequence

Drawback: Lower data rate as with UDP
Reason: More overhead for the protocol

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 22/62

Communication of Prozessen Cooperation of Processes

Using Sockets

Almost all major operating systems support sockets
Advantage: Better portability of applications

Functions for communication via sockets:
Creating a Socket:
socket()
Binding a socket to a port number and making it ready to receive data:
bind(), listen(), accept() and connect()
Sending/receiving messages via the socket:
send(), sendto(), recv() and recvfrom()
Closing eines Socket:
shutdown() or close()

Overview of the sockets in Linux/UNIX: netstat -n or lsof | grep socket

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 23/62

Communication of Prozessen Cooperation of Processes

Connection-less Communication via Sockets – UDP

Client
Create socket (socket)
Send (sendto) and receive data (recvfrom)
Close socket (close)

Server
Create socket (socket)
Bind socket to a port (bind)
Send (sendto) and receive data (recvfrom)
Close socket (close)

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 24/62

Communication of Prozessen Cooperation of Processes

Connection-oriented Communication via Sockets – TCP

Client
Create socket (socket)
Connect client with server socket (connect)
Send (send) and receive data (recv)
Close socket (close)

Server
Create socket (socket)
Bind socket to a port (bind)
Make socket ready to receive (listen)

Set up a queue for connections with clients
Server accepts connections (accept)
Send (send) and receive data (recv)
Close socket (close)

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 25/62

Communication of Prozessen Cooperation of Processes

Create a Socket: socket

int socket(int domain, int type, int protocol);

A call of socket() returns an integer value
The value is called socket descriptor (socket file descriptor)

domain: Specifies the protocol family
PF_UNIX: Local inter-process communication in Linux/UNIX
PF_INET: IPv4
PF_INET6: IPv6

type: Specifies the type of the socket (and thus the protocol):
SOCK_STREAM: Stream socket (TCP)
SOCK_DGRAM: Datagram socket (UDP)
SOCK_RAW: RAW socket (IP)

In most cases the protocol parameter is set to value zero
Create a socket with socket():

1 sd = socket (PF_INET , SOCK_STREAM , 0);
2 if (sd < 0) {
3 perror ("The socket could not be created ");
4 return 1;
5 }
Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 26/62

Communication of Prozessen Cooperation of Processes

Bind Address and Port Number: bind

int bind(int sd, struct sockaddr *address, int addrlen);

bind() binds the newly created socket (sd) to the
address (address) of the server

sd is the socket descriptor from the previous call of
socket()
address is a data structure, which contains the IP
address of the server and a port number
addrlen is the length of the data structure, which
contains the IP address and port number

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 27/62

Communication of Prozessen Cooperation of Processes

Make a Server ready to receive Data: listen

int listen(int sd, int backlog);

listen() specifies how many connection requests
can be buffered by the socket

If the listen() queue has no more free capacity,
further connection requests from clients are rejected
sd is the socket descriptor from the previous call of
socket()
backlog contains the number of possible connection
requests, which can be stored in the queue

Default value: 5
A server for datagrams (UDP) does not need to call
listen(), because it does not establish connections
to clients

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 28/62

Communication of Prozessen Cooperation of Processes

Accept a Connection Request: accept

int accept(int sd, struct sockaddr *address, int *addrlen);

accept() is used by the server to fetch the first
connection request from the queue
The return value is the socket descriptor of the new
socket
If the queue contains no connection requests, the
process is blocked until a connection request arrives
address contains the address of the client
After a connection request was accepted with
accept(), the connection with the client is
established

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 29/62

Communication of Prozessen Cooperation of Processes

Establish a Connection by the Client

int connect(int sd, struct sockaddr *servaddr,
socklen_t addrlen);

Via connect(), the client tries to establish a
connection to a server socket
The client must know the address (hostname and
port number) of the server
sd is the socket descriptor
address contains the address of the server
addrlen is the length of the data structure, which
contains the address of the server

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 30/62

Communication of Prozessen Cooperation of Processes

Connection-oriented Exchange of Data: send and recv

int send(int sd, char *buffer, int nbytes, int flags);
int recv(int sd, char *buffer, int nbytes, int flags);

Data are exchanged via send() and recv() over an
existing connection
send() sends a message (buffer) via the socket
(sd)
recv() receives a message from the socket sd and
stores it in the buffer (buffer)
sd is the socket descriptor
buffer contains the data to be sent or received
nbytes specifies the number of bytes in the buffer
The value of flags is usually zero

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 31/62

Communication of Prozessen Cooperation of Processes

Connection-oriented Exchange of Data: read and write

int read(int sd, char *buffer, int nbytes);
int write(int sd, char *buffer, int nbytes);

In UNIX it is in normal case also possible to use read() and write()
for receiving and sending data via a socket

„Normal case“ means, that read() and write() can be used, when the
parameter flags of send() and recv() contains value zero

The following calls have the same result

1 send(socket ,"Hello World" ,11,0);
2 write(socket ,"Hello World" ,11);

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 32/62

Communication of Prozessen Cooperation of Processes

Connection-less Exchange of Data: sendto and recvfrom

int sendto(int sd, char *buffer, int nbytes, int flags,
struct sockaddr *to, int addrlen);

int recvfrom(int sd, char *buffer, int nbytes, int flags,
struct sockaddr *from, int addrlen);

If a process knows the address of the socket (host and port), to which it
should send data, it uses sendto()
sendto() always transmits together with the data the local address
sd is the socket descriptor
buffer contains the data to be sent or received
nbytes specifies the number of bytes in the buffer
to contains the address of the receiver
from contains the address of the sender
addrlen is the length of the data structure, which contains the address

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 33/62

Communication of Prozessen Cooperation of Processes

Close a Socket: close

int shutdown(int sd, int how);

shutdown() closes a bidirectional socket connection
The parameter how specifies whether no more data
will be received (how=0), no more data will be send
(how=1), or both (how=2)

int close(int sd);

If close() is used instead of shutdown(), this
corresponds to a shutdown(sd,2)

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 34/62

Communication of Prozessen Cooperation of Processes

Sockets via UDP – Example (Server)

1 #!/ usr/bin/env python
2 # Server : Receives a message via UDP
3
4 import socket # Import module socket
5
6 # For all interfaces of the host
7 HOST = '' # '' = all interfaces
8 PORT = 50000 # Port number of server
9

10 # Create socket and return socket deskriptor
11 sd = socket . socket (socket .AF_INET , socket . SOCK_DGRAM)
12
13 try:
14 sd.bind(HOST , PORT) # Bind socket to port
15 while True:
16 data = sd. recvfrom (1024) # Receive data
17 print 'Received :', repr(data) # Print out received data
18 finally :
19 sd. close () # Close socket

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 35/62

Communication of Prozessen Cooperation of Processes

Sockets via UDP – Example (Client)

1 #!/ usr/bin/env python
2 # Client : Sends a message via UDP
3
4 import socket # Import module socket
5
6 HOST = 'localhost ' # Hostname of Server
7 PORT = 50000 # Port number of Server
8 MESSAGE = 'Hello World ' # Message
9

10 # Create socket and return socket deskriptor
11 sd = socket . socket (socket .AF_INET , socket . SOCK_DGRAM)
12
13 sd. sendto (MESSAGE , (HOST , PORT)) # Send message to socket
14
15 sd. close () # Close socket

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 36/62

Communication of Prozessen Cooperation of Processes

Sockets via TCP – Example (Server)

1 #!/ usr/bin/env python
2 # Echo Server via TCP
3
4 import socket # Import module socket
5
6 HOST = '' # '' = all interfaces
7 PORT = 50007 # Port number of server
8
9 # Create socket and return socket deskriptor

10 sd = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
11
12 sd.bind(HOST , PORT) # Bind socket to port
13
14 sd. listen (1) # Make socket ready to receive
15 # Max. number of connections = 1
16
17 conn , addr = sd. accept () # Socket accepts connections
18
19 print 'Connected by ', addr
20 while 1: # Infinite loop
21 data = conn.recv (1024) # Receive data
22 if not data: break # Break infinite loop
23 conn.send(data) # Send back received data
24
25 conn. close () # Close socket

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 37/62

Communication of Prozessen Cooperation of Processes

Sockets via TCP – Example (Client)

1 #!/ usr/bin/env python
2 # Echo Client via UDP
3
4 import socket # Import module socket
5
6 HOST = 'localhost ' # Hostname of Server
7 PORT = 50007 # Port number of server
8
9 # Create socket and return socket deskriptor

10 sd = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
11
12 sd. connect (HOST , PORT) # Connect with server socket
13
14 sd.send('Hello , world ') # Send data
15
16 data = sd.recv (1024) # Receive data
17
18 sd. close () # Close socket
19
20 print 'Empfangen :', repr(data) # Print out received data

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 38/62

Communication of Prozessen Cooperation of Processes

Blocking and non-blocking Sockets

If a socket is created, it per default in blocking mode
All method calls wait until the operation, they initiated, was carried out

e.g. a call of recv() blocks the process until data is received and can be
read from the internal buffer of the socket

The method setblocking() modifies the mode of a socket
sd.setblocking(0) =⇒ switches into non-blocking mode
sd.setblocking(1) =⇒ switches into blocking mode

It is possible to switch between the modes at any time during process
execution

e.g. the method connect() could be used in blocking mode and
afterwards the method read() in non-blocking mode

Source: Peter Kaiser, Johannes Ernesti. Python – Das umfassende Handbuch. Galileo (2008)

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 39/62

Communication of Prozessen Cooperation of Processes

Non-blocking Sockets - some Impacts

recv() and recvfrom()
The method return data only, when they are already stored in the buffer
If the buffer does not contain any data, the method throws an exception
and the program execution continues

send() and sendto()
The methods send the specified data only, when they can be written
directly in the send buffer
If the buffer has no more free capacity, the method throws an exception
and the program execution continues

connect()
The method sends a connection request to the destination socket and
does not wait until this connection is established
If connect() is called, while the connection request is still in progress,
an exception is thrown

By calling connect() several times, it can be checked, whether the
operation is still carried out

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 40/62

Communication of Prozessen Cooperation of Processes

Comparison of Communication Systems
Shared Memory Message Queues (anon./named) Sockets

Pipes
Sort of communication Memory-based Message-based Message-based Message-based
Bidirectional yes no no yes
Platform independent no no no yes
Processes must be related with each other no no for anon. pipes no
Communication over computer boundaries no no no yes
Remain intact without a bound process yes yes no no
Automatic synchronization no yes yes yes

Advantages of message-based communication versus memory-based
communication:

The operating system takes care about the synchronization of accesses
=⇒ comfortable because the user processes do not need to take care
about the synchronization
Can be used in distributed systems without a shared memory
Better portability of applications

Storage can be integrated via network connections

This allows memory-based communication between processes on different independent systems
The problem of synchronizing the accesses also exists here

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 41/62

Communication of Prozessen Cooperation of Processes

Cooperation

Cooperation
Semaphor
Mutex

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 42/62

Communication of Prozessen Cooperation of Processes

Semaphore

In order to protect (lock) critical sections, not only the already
discussed locks can be used, but also semaphores
1965: Published by Edsger W. Dijkstra
A semaphore is a counter lock S with operations P(S) and V(S)

V comes from the dutch verhogen = raise
P comes from the dutch proberen = try (to reduce)

The access operations are atomic =⇒ can not be interrupted
(indivisible)
May also permit multiple processes accessing the critical section

In contrast to semaphores, can locks only be used to permit a single
process entering the critical section at the same time

Cooperating sequential processes. Edsger W. Dijkstra (1965)

https://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 43/62

https://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF

Communication of Prozessen Cooperation of Processes

Semaphore: Functioning

This scenario explains the functioning:
In front of a shop is a stack of shopping baskets
If a customer wants to enter the store, he must take a basket from the
stack
If a customer has finished shopping, he must place back his basket on the
stack
If the stack is empty (=⇒ all shopping baskets have been taken be
customers), no new customers can enter the store as long as a basket
becomes available and is placed on the stack

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 44/62

Communication of Prozessen Cooperation of Processes

A Semaphore consists of 2 Data Structures

COUNT: An integer, non-negative counter variable
Specifies how many processes are allowed to pass the semaphore
currently without getting blocked

The value corresponds, according to the introductory example, with the number of shopping
baskets, which are currently placed on the stack in front of the shop

A waiting room for the processes, which wait until they are allowed to
pass the semaphore

The processes are in blocked state until they are transferred into ready
state by the operating system when the semaphore allows to access the
critical section

The semaphore allows to access the critical section when baskets are available again

The length of the queue matches the number of customers, which wait in front of the store
because no more baskets are available

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 45/62

Communication of Prozessen Cooperation of Processes

3 Access Operations are possible (1/3)

Initialization: First, a new semaphore is created or an existing one is
opened

For a new semaphore, the count variable is initialized at the beginning
with a non-negative initial value

This value is the number of baskets, which are in the queue in front of the store before opening

1 // apply the INIT operation on semaphore SEM
2 SEM.INIT(unsigned int init_value) {
3
4 // initialize the variable COUNT of Semaphor SEM
5 // with a non - negative initial value
6 SEM. COUNT = init_value ;
7 }

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 46/62

Communication of Prozessen Cooperation of Processes

3 Access Operations are possible (2/3) Image Source: Carsten Vogt

P operation (reduce): It checks the value of the counter variable
If the value is 0, the process becomes blocked

The customer must wait in the waiting queue in front of the shop
If the value > 0, it is reduced by 1

The customer takes a basket

1 SEM.P() {
2 // if the counter variable = 0, the process becomes blocked
3 if (SEM. COUNT == 0)
4 < block >
5
6 // if the counter variable is > 0, the counter variable
7 // is decremented immediately by 1
8 SEM. COUNT = SEM. COUNT - 1;
9 }

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 47/62

Communication of Prozessen Cooperation of Processes

3 Access Operations are possible (3/3) Image Source: Carsten Vogt

V operation (raise): It first increases the counter variable by value 1
A basket is placed back on the stack
If processes are in the waiting room, one process gets deblocked

A customer can now take a basket
The process, which just got deblocked, continues its P operation and first
reduces the counter variable

The customer takes a basket

1 SEM.V() {
2 // counter variable = counter variable + 1
3 SEM. COUNT = SEM. COUNT + 1;
4
5 // if processes are in the waiting room , one gets deblocked
6 if (< SEM waiting room is not empty >)
7 < deblock a waiting process >
8 }

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 48/62

Communication of Prozessen Cooperation of Processes

Producer/Consumer Example (1/3)

A producer sends data to a consumer
A buffer with limited capacity is used to minimize the waiting times of
the consumer
Data is placed into the buffer by the producer and the consumer
removes data from the buffer
Mutual exclusion is necessary in order to avoid inconsistencies
Buffer = completely filled =⇒ producer must be blocked
Buffer = empty =⇒ consumer must be blocked

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 49/62

Communication of Prozessen Cooperation of Processes

Source: http://www.ccs.neu.edu/home/kenb/synchronize.html
Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 50/62

Communication of Prozessen Cooperation of Processes

Producer/Consumer Example (2/3)

3 semaphores are used for the synchronization of the accesses:
empty
filled
mutex

The semaphores filled and empty are used in opposite to each other
empty counts the number of empty locations in the buffer and its value is
reduced by the producer (P operation) and raised by the consumer (V
operation)

empty = 0 =⇒ puffer is completely filled =⇒ producer is blocked
filled counts the number of data packets (occupied locations) in the
buffer and its value is raised by the producer (V operation) and reduced
by the consumer (P operation)

filled = 0 =⇒ puffer is empty =⇒ consumer is blocked

The semaphore mutex is used to ensure for the mutual exclusion

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 51/62

Communication of Prozessen Cooperation of Processes

Producer/Consumer Example (3/3)
1 typedef int semaphore ; // semaphores are of type integer
2 semaphore filled = 0; // counts the number of occupied locations in the buffer
3 semaphore empty = 8; // counts the number of empty locations in the buffer
4 semaphore mutex = 1; // controls access to the critial sections
5
6 void producer (void) {
7 int data;
8
9 while (TRUE) { // infinite loop

10 createDatapacket (data); // create data packet
11 P(empty); // decrement the empty locations counter
12 P(mutex); // enter the critical section
13 insertDatapacket (data); // write data packet into the buffer
14 V(mutex); // leave the critical section
15 V(filled); // increment the occupied locations counter
16 }
17 }
18
19 void consumer (void) {
20 int data;
21
22 while (TRUE) { // infinite loop
23 P(filled); // decrement the occupied locations counter
24 P(mutex); // enter the critical section
25 removeDatapacket (data); // pick data packet from the buffer
26 V(mutex); // leave the critical section
27 V(empty); // increment the empty locations counter
28 consumeDatapacket (data); // consume data packet
29 }
30 }

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 52/62

Communication of Prozessen Cooperation of Processes

Semaphore Example: PingPong

1 // Initialization of semaphores
2 s_init (Sema_Ping , 1);
3 s_init (Sema_Pong , 0);
4
5 task Ping is
6 begin
7 loop
8 P(Sema_Ping);
9 print ("Ping");

10 V(Sema_Pong);
11 end loop;
12 end Ping;
13
14 task Pong is
15 begin
16 loop
17 P(Sema_Pong);
18 print ("Pong , ");
19 V(Sema_Ping);
20 end loop;
21 end Pong;

The two endless-running
processes and Ping print out
continuously PingPong,
PingPong, PingPong,. . .

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 53/62

Communication of Prozessen Cooperation of Processes

Semaphore Example: 3 Runners (1/3)

3 runners should run a certain
distance one behind the other

The 2nd runner is not allowed
to start before the 1nd runner
finished his run
The 3th runner is not allowed
to start before the 2nd runner
finished his run

Is this solution correct?

1 // Initialization of semaphores
2 s_init (Sema , 0);
3
4 task First is
5 < run >
6 V(Sema);
7
8 task Second is
9 P(Sema);
10 < run >
11 V(Sema);
12
13 task Third is
14 P(Sema);
15 < run >

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 54/62

Communication of Prozessen Cooperation of Processes

Semaphore Example: 3 Runners (2/3)

The solution is not correct!
2 sequence conditions exist:

Runner 1 prior runner 2
Runner 2 prior runner 3

Both sequence conditions use the
same semaphore

It can happen that runner 3
prior runner 2 decreases with
its P operation the semaphore
by value 1

How could a correct solution look
like?

1 // Initialization of semaphores
2 s_init (Sema , 0);
3
4 task First is
5 < run >
6 V(Sema);
7
8 task Second is
9 P(Sema);
10 < run >
11 V(Sema);
12
13 task Third is
14 P(Sema);
15 < run >

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 55/62

Communication of Prozessen Cooperation of Processes

Semaphore Example: 3 Runners (3/3)

Possible solution:
Introduce a second
semaphore
The second semaphore is
also initialized with value 0
Runner 2 increases the
second semaphore with its
V operation
Runner 3 decreases the
second semaphore with its
P operation

1 // Initialization of semaphores
2 s_init (Sema1 , 0);
3 s_init (Sema2 , 0);
4
5 task First is
6 < run >
7 V(Sema1);
8
9 task Second is

10 P(Sema1);
11 < run >
12 V(Sema2);
13
14 task Third is
15 P(Sema2);
16 < run >

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 56/62

Communication of Prozessen Cooperation of Processes

Binary Semaphore

Binary semaphores are initialized with value 1 and ensure that 2 or
more processes can not simultaneously enter their critical sections

Example: The semaphore mutex from the producer/consumer example

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 57/62

Communication of Prozessen Cooperation of Processes

Strong and weak Semaphores

For each semaphore or binary semaphore, a waiting queue exists, which
stores the waiting processes

Strong semaphores
Processes are fetched in FIFO order from the queue
Typical sort of the semaphore, which is provided by operating systems
Advantage: Starvation is impossible

Weak semaphores do not set the order, in which the processes are
fetched from the queue

Used for real-time operation, because there the deblocking of processes
bases on their priority and not on the time when they became blocked

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 58/62

Communication of Prozessen Cooperation of Processes

Semaphores in Linux/UNIX (1/2) Image Source: Carsten Vogt

The semaphore concept of Linux/UNIX differs from the semaphore
concept of Dijkstra

In Linux/UNIX, the counter variable can be raised or reduced with a P or
V operation by more than value 1
Multiple access operations on different semaphores can be carried out in
an atomic way, which means that they are indivisible

Multiple P operations can, for example, be combined and they are only
carried out, if none of the P operations causes a blocking

Linux/UNIX systems maintain
in the kernel a semaphore table,
which contains references to
arrays of semaphores

Each array contains a group
of semaphores, which is
identified by the index of the
table

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 59/62

Communication of Prozessen Cooperation of Processes

Semaphores in Linux/UNIX (2/2) Image Source: Carsten Vogt

Individual semaphores are
addressed using the table index
and the position in the group
(starting from 0)
Atomic operations on multiple
semaphores can only be carried
out when all semaphores belong
to the same group

Linux/UNIX operating systems provide 3 system calls for working with semaphores

semget(): Create new semaphore or a group of semaphores or open an existing semaphore
semctl(): Request or modify the value of an existing semaphore value or of a semaphore group or erase a semaphore
semop(): Carry out P and V operations on semaphores
Information about existing semaphores provides the command ipcs

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 60/62

Communication of Prozessen Cooperation of Processes

Mutexes

If the option of a semaphore count is not required, a simplified
semaphore version, the mutex can be used instead

Mutexes (derived from Mutual Exclusion) are used to protect critical
sections, which are allowed to be accessed by only a single process at
any given moment

Mutexes can only have 2 states: occupied and not occupied
Mutexes have the same functionality as binary semaphores

2 functions for accessing a Mutex exist
mutex_lock =⇒ corresponds to the P operation
mutex_unlock =⇒ corresponds to the V operation

If a process wants to access a critical section, it calls mutex_lock
If the critical section is locked, the process gets locked, until the process
in the critical section is finished and calls mutex_unlock
If the critical section is not locked, the process can enter it

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 61/62

Communication of Prozessen Cooperation of Processes

Monitor and erase IPC Objects

Information about existing shared memory segments provides the
command ipcs

The easiest way to erase semaphores, shared memory segments and
message queues from the command line is the command ipcrm

ipcrm [-m shmid] [-q msqid] [-s semid]
[-M shmkey] [-Q msgkey] [-S semkey]

Or alternatively just. . .
ipcrm shm SharedMemoryID
ipcrm sem SemaphorID
ipcrm msg MessageQueueID

Prof. Dr. Christian Baun – 10th Slide Set Operating Systems – Frankfurt University of Applied Sciences – SS2016 62/62

	Communication of Prozessen
	Shared Memory
	Message Queues
	Pipes
	Sockets
	Connection-less Communication via Sockets
	Connection-oriented Communication via Sockets

	Cooperation of Processes
	Semaphore
	Access Operations on Semaphores
	Producer/Consumer Example
	Semaphore Example: PingPong
	Semaphore Example: 3 Runners
	Binary Semaphore
	Strong and weak Semaphores
	Semaphores in Linux/UNIX
	Mutexes
	Monitor and erase IPC Objects

