Written examination in Computer Networks

February 14th 2014

Las	t na	ıme	: _											
Firs	st na	ame	e: _											
Stu	den	t nı	ımb	er:										
•			on all numbe		ts (in	cludi	ng th	ie cov	ver she	et) yoı	${ m ir}\ last$	name,	first	name and
•	Use	the p	orovio	led sl	$_{ m ieets}$.	Owr	ı pap	er mu	ıst <i>not</i>	t be us	ed.			
•	Plac	e you	ır <i>ID</i>	card	and	your	$stud\epsilon$	ent II) card	on you	ır tabl	e.		
•										sided o copie		A4 she	et in \cdot	the exam.
•	You	are a	allowe	ed to	use a	non-	prog	ramn	nable c	alculat	or.			
•	Ans	wers,	writ	ten w	ith p	encil	or re	d per	n are n	ot acc	epted.			
•	Tim	e lim	it: <i>90</i>	$0 \ min$	utes									
• Turn off your mobile phones!														
${ m Re}$	sult	•												
1	2	3	4	5	6	7	8	9	10	11	12	13	Σ	Grade

Question 1)

Points:

Maximum points: 7

An image has a size of 2000×1000 pixels. 2 Bytes per pixel are used for the color information. Assume the image is uncompressed. How long does it take to transmit the image via a...

a) 64 kbps ISDN connection?

b) 16 Mbps DSL connection?

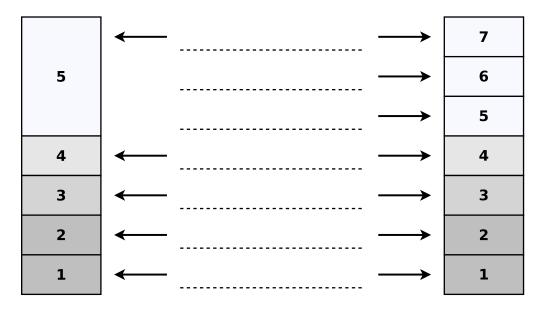
c) 100 Mbps Ethernet connection?

Last name:	First name:	Student number:
------------	-------------	-----------------

Last name:	First	name:	Stu	dent number:
Question	n 2)			Points:
Maximum points: 1	+1+1+1+1+	-1+1+1=7		
a) Computer net	works usually	v implement.		
\square serial	data transmi	ssion	\square parallel dat	a transmission
b) Computer net	works with co	oaxial cables	operate in	
\square simple	ex mode	☐ full-dup	olex mode	\square half-duplex mode
c) The global pos	sitioning syst	em (GPS) o	perates in	
\square simple	ex mode	☐ full-dup	olex mode	\square half-duplex mode
d) Computer net	works with to	wisted pair ca	ables operate i	n
\square simple	ex mode	☐ full-dup	olex mode	\square half-duplex mode
e) Wireless netwo	orks with jus	t a single cha	annel operate i	in
\square simple	ex mode	☐ full-dup	olex mode	\square half-duplex mode
f) What describe	es the physica	al topology o	f a computer r	network?

g) What describes the logical topology of a computer network?

Question 3)


Points:

Maximum points: 3.5+0.5+0.5+0.5+0.5+0.5=6

a) Write on the dotted lines the names of the layers.

Hybrid Reference Model

OSI Reference Model

b)	Ethernet frames are created in the	layer.
c)	UDP segments are created in the	layer.
d)	IP packets are created in the	layer.
e)	Signals are created in the	layer.
f)	TCP segments are created in the	layer.

Last name:	First name:	Student number:
------------	-------------	-----------------

	•	4)
Quest	10n	4)
		<i>-,</i>

Points:

Maximum points: 4+2+1+1+1=9

a) Assign the devices in the table to the layers of the hybrid reference model.

Column 1 stands for the bottom layer and column 5 for the top layer of the hybrid reference model. If more than just a single layer is a correct answer, it is sufficient to select at least one correct layer.

	Hybrid reference model laye				layer
	1	2	3	4	5
Bridge					
Gateway					
Hub					
Modem					
Multiport Bridge					
Repeater					
Router					
Switch					

- b) Name two examples of Bridge implementations.
- c) What information is stored in forwarding tables of Bridges?
- d) Why do Bridges try to avoid loops?
- e) Which device connects wireless network devices in infrastructure mode?

Question 5)

Points:

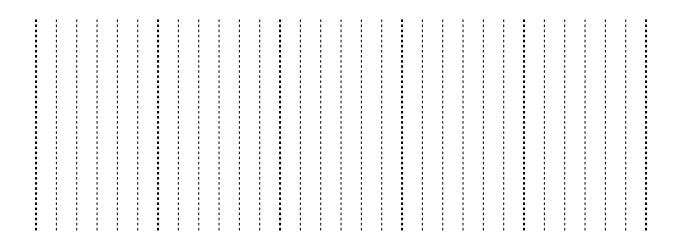
Maximum points: 2+2+1+1=6

a) Which two problems can occur, when the line code NRZ is used to encode data?

b) How can the problems from subtask a) be avoided?

c) Why do not all line codes ensure a signal level change for each transmitted bit?

d) How is the efficiency of a line code calculated?


Quest	tion	6)
Q CLOD		\sim $_{J}$

Points:

Maximum points: 5

Encode the bit sequence with 5B6B and NRZ and draw the signal curve.

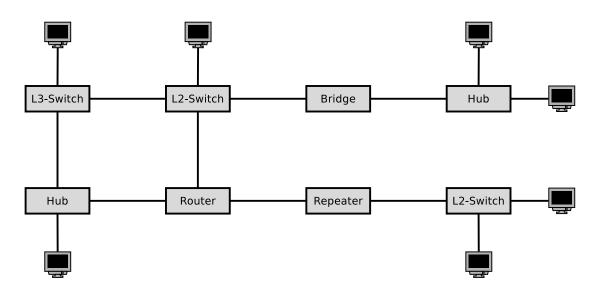
Bit sequence: $10111 \ 10010 \ 01001 \ 01011 \ 00100$

5B	6B	6B	6B	5B	6B	6B	6B
	neutral	positive	negative		neutral	positive	negative
00000		001100	110011	10000		000101	111010
00001	101100			10001	100101		
00010		100010	101110	10010		001001	110110
00011	001101			10011	010110		
00100		001010	110101	10100	111000		
00101	010101			10101		011000	100111
00110	001110			10110	011001		
00111	001011			10111		100001	011110
01000	000111			11000	110001		
01001	100011			11001	101010		
01010	100110			11010		010100	101011
01011		000110	111001	11011	110100		
01100		101000	010111	11100	011100		
01101	011010			11101	010011		
01110		100100	011011	11110		010010	101101
01111	101001			11111	110010		

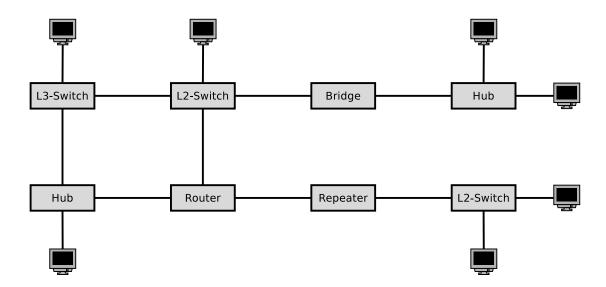
Last name:	First name:

Question 7) Points: Maximum points: 7 Which protocol... a) provides congestion control and flow control? b) resolves logical addresses into physical addresses? c) avoids collisions inside physical networks? d) provides routing within autonomous systems via the Bellman-Ford algorithm? e) allows remote control of computers in an encrypted way? f) provides routing within autonomous systems via the Dijkstra algorithm? g) assigns the network configuration to network devices? h) allows remote control of computers in a unencrypted way? i) realizes connectionless inter-process communication? j) resolves domain names into logical addresses?

Student number:


- k) detects collisions inside physical networks?
- l) allows downloading and uploading files in an unencrypted way?
- m) exchanges diagnostic and control messages?
- n) reduces a computer network to a loop-free tree?

Question 8)


Points:

Maximum points: 4+2=6

a) Sketch in the diagram of the network topology all collision domains.

b) Sketch in the diagram of the network topology all broadcast domains.

Question 9)

Points:

Maximum points: 4+4=8

a) Error Detection via CRC: Check, if the received frame was transmitted correctly.

Received frame: 1011010110110 Generator polynomial: 100101

b) Error Correction via simplified Hamming Distance (Hamming ECC method). Verify, if the received message was transmitted correctly.

Received message: 101110100010

Last name:	First name:	Student number:

Quest	ion	11	J)
Quest	1011	т,	J

Points:																						
---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Maximum points: 5+5=10

Calculate for each subtask the subnet mask and answer the questions.

a) Split the class B network 175.8.0.0 for implementing 50 subnets.

	Network ID:	10101111.00001000.00000000.00000000 175.8.0.0
	Number of bits	for subnet IDs?
	Subnet mask:	
	Number of bits	for host IDs?
	Number of host	IDs per subnet?
b)	Split the class C	network 200.111.222.0 into subnets, which contain 7 hosts each.
	Network ID:	11001000.01101111.11011110.00000000 200.111.222.0
	Number of bits	for host IDs?
	Subnet mask:	
	Number of bits	for subnet IDs?
	Number of possi	ible subnets?

binary representation	decimal representation
1000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

Last name:	First name:	Student number:
Bast Hallio.	I Hat Halle.	Duddelle Halliber

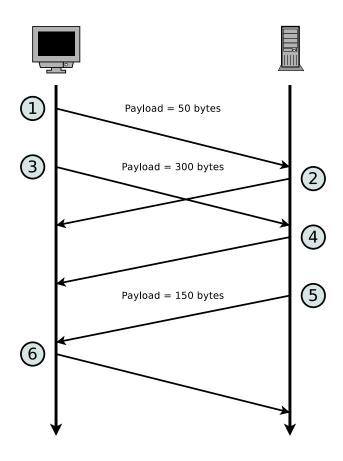
O		11)
Wue	stion	$\perp \perp \perp$
Q 32 3 .		/

Points:									
---------	--	--	--	--	--	--	--	--	--

Maximum points: 8

Calculate the first and last host addresses, the network address and the broadcast address of the subnet.

IP Address:	167.199.31.131	10100111.11000111.00011111.10000011
Subnet mask:	255.255.254.0	11111111.11111111.11111110.00000000
Network address?		
First host address?		
Last host address?		
Broadcast address?		

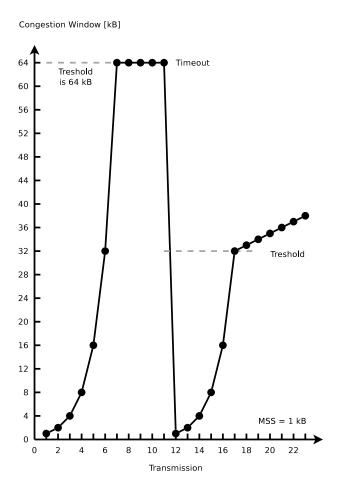

binary representation	decimal representation
10000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

Question 12)

Points:

Maximum points: 8

The diagram shows an excerpt of the transmission phase of a TCP connection. Complete the table.


Message	ACK	SYN	FIN	Payload length	Seq number	Ack number
1		0	0	50	220	931
2		0	0	0		
3		0	0	300		
4		0	0	0		
5		0	0	150		
6		0	0	0		

Question 13)

Points:

Maximum points: 1+1+1=3

- a) Which two possible reasons for the occurrence of congestion exist?
- b) Mark in the figure the slow-start phase.
- c) Mark in the figure the congestion avoidance phase.

